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Abstract
It is shown experimentally, that fourth-order exchange interactions, i.e.
biquadratic, three-spin and four-spin interactions, are able to create a particular
order parameter which we have calledO4. Consistently, the ordering type ofO4

always conforms to the sign of the fourth-order interaction sum evaluated from
measurements of the cubic susceptibility χ3. Earlier investigations suggest
that O4 can be identified with the expectation value of the transverse spin
component, 〈Sx〉, while the conventional (Heisenberg) order parameter, O2, is
given by 〈Sz〉. Therefore, the observed ordering temperature of O4 is never
larger than the ordering temperature of O2. The experimental signatures of
O4 are illustrated using the cubic pure spin magnets Eu0.75Sr0.25Te, GdAg,
GdMg, EuS and EuO as examples. These materials provide all ferromagnetic
and antiferromagnetic combinations for O2 and O4. For the ferromagnets
EuS and EuO, second-order and fourth-order interactions are known to be
ferromagnetic. This is the most complicated situation for the identification
of O4. Ac susceptibility measurements performed at different angles to an
applied static magnetic field reveal the conventional rotational symmetric state
around the field axis. However, measurements in the critical temperature range
indicate a discontinuous rise of O2 which is in contrast to all hitherto reported
results but in agreement with mean field predictions. In most antiferromagnets
in which susceptibility measurements reveal ferromagnetic O4 the associated
ordered moment is usually too small to be detected with neutron scattering
without polarization analysis.

1. Introduction

This communication provides more systematic experimental evidence for the previously
advanced thesis that fourth-order exchange interactions are able to generate a specific order
parameter which we have called O4 [1, 2]. The class of fourth-order exchange interactions
comprises biquadratic, ∼(SiSj )2, three-spin, ∼(SiSj )(SjSk) and four-spin, ∼(SiSj )(SkSl),
0953-8984/01/316835+18$30.00 © 2001 IOP Publishing Ltd Printed in the UK 6835
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interactions. Evaluation of the strength of these interaction processes is possible with
measurements of the cubic susceptibility χ3(T ) defined by

Bi = 1/χ1m + 1/χ3m
3 + · · · (1)

where Bi is the external magnetic field converted to its value inside the sample, χ1 is the
well known linear susceptibility and m is the reduced (dimensionless) magnetization [3, 4].
Assuming isotropic interactions, the two susceptibilities approach Curie–Weiss laws in the
high-temperature limit (mean field approximation) with Curie–Weiss temperatures �1 and
�3, respectively [3, 4]. This prediction was confirmed experimentally for the cubic europium
chalcogenides [3]. Restricting the measurements to pure spin materials (Landé factor g = 2)
the two experimental Curie–Weiss temperatures are given by magnetic interactions: �1 is a
weighted sum of second-order (Heisenberg) and fourth-order interactions while �3 is given
exclusively by fourth-order exchange interactions [4].

The fact that χ3(T ) also exhibits a Curie–Weiss law was interpreted as a high-temperature
indication of a second ordering process exclusively due to fourth-order interactions. In the
present paper we present experimental examples where this view is confirmed as correct,
meaning that χ3 diverges at the ordering temperature of O4. It must, however, be noted that a
change of sign of χ−1

3 usually does not correspond to an order–disorder transformation.
A very clear correlation between the sign of �3 and the ordering type of O4 was

obtained recently for the diamagnetically diluted antiferromagnets EuxSr1−xTe [2, 5]. For
all compositions x for which �3 < 0 a second antiferromagnetic phase is observed in
EuxSr1−xTe. This phase is distinguished by a second critical field curve with a distinguished
Néel temperature. There are, so to say, two antiferromagnets in one material. We have
identified this second ordering structure with O4.

One method to distinguish between the individual fourth-order interaction processes is
the analysis of the composition dependence of the Curie–Weiss temperature �3(x) of the
third-order susceptibility χ3 in diamagnetically diluted samples of the magnetic material of
interest [4, 6]. A comparison of the experimental�3(x) and�1(x) dependences in EuxSr1−xS,
for instance, revealed [4, 6] that the fourth-order interaction strength as given by �3 is well
approximated by:

�3(x) = −19.2x + 21.9x2. (2)

The coefficients in equation (2) show that biquadratic interactions are antiferromagnetic and
three-spin interactions are ferromagnetic in EuS. Four-spin interactions would give a term ∼x3.
This term seems to be weak and could not be identified. Both coefficients in equation (2) are
larger than the conventional Curie temperature of T ‖

C = 16.5 K for EuS. As a consequence,
fourth-order interactions are strong enough to affect the spin dynamics for all temperatures: on
the one hand, they are able to make the conventional order–disorder phase transition first order
[7–10] and, on the other hand, they give rise to new exponents ε in the low-temperature T ε

Bloch law describing the deviation of the order parameter from its saturation value at absolute
zero [2, 11]. The exponent ε was found to be 9/2 for integral spin and 2 for half-integral spin
in cubic pure spin materials with isotropic interactions [11]. A Bloch exponent of 2 observed
for ferromagnets such as EuS, EuO and CrBr3 [2, 11] is clearly at variance with present spin
wave theories [12, 13].

First-order transitions caused by fourth-order exchange interactions have been predicted
by numerous mean field calculations [7–10]. Our ac susceptibility measurements on EuS
and EuO confirm this prediction but they also show that at this particular type of first-
order transition only the order parameter is discontinuous while the linear susceptibility is
well known to diverge rather normally [14–17]. Since the critical behaviour of the order
parameter is extremely difficult to determine with any of the available experimental methods
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the first-order character of the magnetic phase transitions has often not been recognized in
the past. Moreover, very little latent heat seems to be associated with first-order transitions
driven by fourth-order interactions [18, 19]. Since only the order parameter is discontinuous
the macroscopic magnetic susceptibility of antiferromagnets does not necessarily exhibit a
discontinuity because the susceptibility does not sample the order parameter. MnS2 seems to
be a typical example for this: although the discontinuity of the order parameter is as large
as 0.66 [20] the macroscopic susceptibility gives a very weak indication only for a first-order
character of the Néel transition [21]. Moreover, no hysteresis is observed [20]. Measurements
of the magnetic specific heat indicate that if there is any latent heat it must be small [18].
Therefore, in cases where the discontinuity of the order parameter is much smaller, it becomes
increasingly difficult to ascertain the first-order character of the magnetic phase transition.
This applies in particular to neutron scattering experiments in which the critical behaviour of
the order parameter is strongly masked by critical diffuse scattering intensities. Only a careful
separation of both scattering contributions allows one to obtain the critical behaviour of the
order parameter. In [22] more detailed investigations of the critical behaviour in the presence
of fourth-order interactions are presented.

To summarize, there are a number of experimental signatures of fourth-order exchange
interactions such as:

(a) Particular exponents ε in the T ε Bloch law describing the deviation of the order parameter
from its saturation value at absolute zero. In [11] we have illustrated how the exponent
ε depends on the spin quantum number and on the dimensionality of the magnetic
interactions.

(b) Deviations of the cubic susceptibility from the Curie law χ3 = C3/T in the high-
temperature limit. In the cubic materials with pure spin magnetism considered here these
deviations can be interpreted exclusively in terms of fourth-order exchange interactions
and/or correlations [4]. In particular, in insulators a Curie–Weiss law is observed for χ3.
This makes χ3 a very valuable quantity for a quantitative investigation of fourth-order
interactions.

(c) Observation of a second ordering process which has all characteristics of an order–disorder
phase transition although it occurs in an ordered state. This conforms qualitatively to
predictions made by mean field calculations including fourth-order interactions: there is
first an order–disorder phase transition with a possible but not necessarily discontinuous
rise in magnetization into a collinearly ordered spin phase. At some lower temperature
a transition into a canted spin phase occurs [10]. Although these predictions seem to be
physically relevant our experiments show that it is not appropriate to view the second
transition as a spin reorientation process or an order–order phase transition because the
already existing order parameter O2 exhibits no anomaly at this second phase transition
[1]. This shows the orthogonality of both ordering structures and justifies the definition
of an independent order parameter O4.

(d) Although there are different reasons for magnetic first-order transitions, fourth-order
interactions frequently lead to a first-order transition in the sense that only the order
parameter is discontinuous [7–10].

Here we focus on the experimental identification of O4. We restrict ourselves to a few
selected materials for which all antiferromagnetic and ferromagnetic combinations occur for
O2 and O4. The most intriguing situation is given if O2 and O4 are ferromagnetic. This can
be expected for EuS and EuO, since�1 > 0 and�3 > 0 for both materials [3]. A geometrical
distinction between the two assumed order parameters by means of a magnetic field is therefore
not possible because neither of them will be aligned parallel to the field. Since the resulting
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magnetic state is expected to be non-collinear, we performed ac susceptibility measurements
transverse to an applied static magnetic field. In principle, these measurements are more
suitable for the detection of small deviations from a collinear spin structure than longitudinal
measurements. However, they have to be carried out on highly perfect spherical samples.
For sample shapes deviating from a rotational symmetric ellipsoid the demagnetization field
is not precisely defined. As a consequence, a state with a non-uniform magnetization due to
magnetic domains with moment components transverse to the field persists up to the largest
applied fields.

Our experiments on EuO and EuS single-crystal spheres reveal no anomalous behaviour
of the transverse susceptibility. The observation of the conventional rotational symmetric
magnetic state around the field axis, however, does not definitely exclude our assumption of
a non-collinear magnetic state. It only shows that the vectorial sum of all transverse moment
components is zero.

2. Experimental details

For a number of insulating magnetic materials a quantitative measure for the fourth-order
interaction sum is now available by the experimental Curie–Weiss temperature�3 of the third-
order susceptibility χ3 [2, 3]. In metals, no Curie–Weiss law is observed for χ3 [1, 23, 24].
Instead, χ3 shows a strong temperature dependence only near its divergence at the ordering
transition ofO4 but assumes a very weak temperature dependence for high temperatures. This
implies that the sign of the fourth-order interaction sum can change as a function of temperature
in metals. Even the sign of χ−1

3 can change as a function of temperature [23], which formally
corresponds to a divergence but without indicating a phase transition. Strength and type (i.e.
sign) of the total fourth-order interaction must in those cases be estimated from the difference
between the experimental χ3 value and the calculated Curie value for χ3, assuming �3 ≡ 0.
Table 1 compiles for a number of Eu and Gd compounds the established ordering types of
O2 and the predicted ordering types forO4 according to neutron scattering and magnetization
studies, preferentially measurements of χ3.

Table 1. Established ordering types of conventional order parameter O2 and proposed ordering
types for O4.

EuO EuS GdS Gd0.8Eu0.2S GdMg EuTe Eu0.75Sr0.25Te GdAg

O2 ferro ferro anti anti ferro anti anti anti
O4 ferro ferro ferro anti anti ferro anti ferro

We start by discussing one material with both order parameters antiferromagnetic. This
is the most convenient situation since the order parameters are easily distinguished on account
of their different critical fields Bc(T ) which are marked by clear anomalies in conventional,
i.e. field-parallel, magnetization curves. The extrapolations Bc → 0 for both Bc(T ) curves
give the two Néel temperatures.

Table 1 contains two such examples. Since Gd0.8Eu0.2S was discussed in detail in
[23] we focus here on Eu0.75Sr0.25Te. For the diamagnetically diluted antiferromagnets
EuxSr1−xTe it was shown [2, 3, 25] that antiferromagnetic biquadratic interactions dominate
over ferromagnetic three-spin interactions for x < 0.85 such that �3 < 0 for x < 0.85.
Hence, both order parameters are antiferromagnetic for x < 0.85 in EuxSr1−xTe. This can
be proved by the observation of two different critical field curves. Figure 1(a) presents a
differentiated low-temperature magnetization curve of Eu0.75Sr0.25S, revealing one narrow
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Figure 1. (a) First derivative dm/ dBi of normalized magnetization m versus internal field Bi for
Eu0.75Sr0.25Te at a temperature of 52 mK. The inflection point at B‖

c is identified as the critical
field of conventional order parameter O2 and the peak at B⊥

c is the critical field of transverse
order parameter O4. (b) Second derivative of normalized magnetization allowing a more precise
localization of the critical field B‖

c .

maximum at B⊥
c ∼ 0.35 T and a second anomaly at B‖

c ∼ 6.7 T where an inflection point
is noticed. This anomaly is seen more clearly as an extremum in the second derivative of
magnetization as is shown in figure 1(b). Since both anomalies also give rise to magnetocaloric
effects [25] one can be sure that we are dealing with phase transitions. It should be noted that
the phase transition at B⊥

c is absent for the EuxSr1−xTe samples with x > 0.85, for which O4

is assumed to be ferromagnetic because �3 > 0 [25].
Performing magnetization measurements such as in figure 1 for different temperatures

as well as magnetization measurements as a function of temperature for different fields the
complete B⊥

c (T ) and B‖
c (T ) curves can be obtained. These are shown in figure 2 for a sample

of composition Eu0.7Sr0.3Te. Note the much smaller B⊥
c values compared to the B‖

c values.
Apparently,O4 is much less stable against the application of a magnetic field thanO2. The two
very similar Néel temperatures confirm that the fourth-order interactions are approximately as
strong as the second-order interactions. It must be considered as characteristic that no definite
anomaly can be seen in the B‖

c (T ) curve at T ⊥
N . This is in accordance with the assumed

orthogonality of both ordering structures.
We can give only a very approximate value for the ordered saturation moment of O4.

Since both order parameters give rise to the same set of half-integral neutron scattering
lines of the MnO type [5, 25] it is not possible to distinguish them in zero field neutron
scattering experiments. On measuring the low-temperature scattering intensities as a function
of field, a sudden intensity decrease is observed at B⊥

c with increasing field [5]. This
intensity loss corresponds to the disappearance of O4 at the critical field B⊥

c . In [5]
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Figure 2. Critical fields B‖
c and B⊥

c of Eu0.7Sr0.3Te as a function of temperature. The two
similar Néel temperatures show that second-order and fourth-order exchange interactions have a
comparable strength. Note, however, that B⊥

c values are smaller by a factor of 20 compared to B‖
c

values. Full curves are guides to the eye only. No definite anomaly is visible in the B‖
c (T ) curve

at T ⊥
N .

a proportion of O4/O2 ∼ 0.4 was estimated. This means that the saturation moment
of O4 is about 2.6 µB . Alternatively, in macroscopic magnetization measurements [2]
one would rather estimate a saturation value ∼1 µB from the observed magnetization
increase at B⊥

c . This is a frequently observed discrepancy: neutron scattering shows larger
magnetization changes than macroscopic measurements of the field parallel magnetization
component.

We now turn to GdAg as an example for the combination O2 = antiferromagnetic and
O4 = ferromagnetic. For this class of magnets the Curie temperature of O4 is marked by a
sudden strong field dependence of the magnetic susceptibility. This has been observed for the
antiferromagnets EuTe [2], GdS [23] and GdAg [24]. While for EuTe and GdS the susceptibility
becomes field dependent just at the Néel temperature indicating that the Néel temperature of
O2 and the Curie temperature of O4 are identical, the two ordering temperatures are clearly
different for GdAg for which T ‖

N = 134 K and T ⊥
C ≈ 100 K. Figure 3 shows conventional dc

susceptibility measurements on a polycrystalline GdAg sample obtained for different values
of the applied magnetic field. At the conventional Néel temperature of T ‖

N = 134 K only a
weak maximum can be seen. For an ideal isotropic antiferromagnet we would expect that
the susceptibility decreases to χ(T = 0) = 2/3 ∗ χ(T ‖

N) due to an isotropic distribution
of magnetic domains. Instead, the susceptibility of GdAg decreases much more weakly for
T < T

‖
N and becomes strongly field dependent at about 100 K. This temperature we identify

as the Curie temperature T ⊥
C of O4. Evidence for this is provided by the divergence of the

cubic susceptibility χ3 at T ⊥
C ≈ 100 K. Figure 3 also shows that for fields smaller than 10 mT,

field cooled (FC) and non-field cooled (NFC) susceptibility curves typically have different
characteristics below T ⊥

C . The lack of thermodynamic equilibrium below T ⊥
C also confirms

that we are dealing with a particularly long-range magnetic order.
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Figure 3. Static susceptibility of a polycrystalline GdAg sample measured in different external
magnetic fields Bo. The temperature T ⊥

C at which a sudden strong field dependence sets in is
identified as the Curie temperature of O4. For fields Bo < 10 mT hysteresis is observed for
T � T ⊥

C as is typical for an ordered state. At the conventional Néel temperature T ‖
N only a weak

maximum can be seen.

To show the divergence of χ3 at T ⊥
C , magnetic isotherms have to be measured up to the

largest available field in order that their small curvature can clearly be detected. Note that
χ3 describes the curvature of the magnetic isotherms according to equation (1). For an ideal
isotropic antiferromagnet with no fourth-order interactions a linear relation between the low-
temperature magnetization and the magnetic field is expected. This can easily be shown
theoretically and was borne out also by computer simulations for EuTe [26]. For such an
antiferromagnet, �3=0 and χ3 obeys the Curie law χ3 = C3/T in the high-temperature limit.
At TN , χ3 diverges meaning that the magnetization becomes a linear function of the field
(see equation (1)). For all temperatures T � TN , χ3 remains infinite, i.e. the magnetization
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Figure 4. Paramagnetic isotherms of GdAg plotted as squared reduced magnetization m2 versus
Bi/m (Arrott plot). The slopes of these lines give the cubic susceptibility χ3 which is negative,
meaning that the magnetization increases faster than linearly with field. Fourth-order interactions
are therefore ferromagnetic.

increases linearly with field1. Unfortunately, there is no isotropic antiferrromagnet known to
us which would show these properties.

Magnetization curves of GdAg are anomalous in that they increase faster than linearly
with field for all temperatures. This corresponds to a negative cubic susceptibility. In
contrast to the insulating antiferromagnet EuTe [2, 3] the cubic susceptibility of the metallic
antiferromagnets GdAg and GdS [23] does not approach the anticipated Curie–Weiss law
in the high-temperature limit. This does not fit the mean field model, but the negative
cubic susceptibility is characteristic for ferromagnetic fourth-order interactions and therefore
consistent with the observed ferromagnetic O4 in GdAg. In figure 4 we show a selection
of paramagnetic isotherms for GdAg plotted as squared reduced magnetization m2 versus
Bi/m (Arrott plot). It can be seen that the cubic susceptibility, i.e. the slope of the isotherms,
is negative even in the paramagnetic phase. Due to the strong antiferromagnetic bilinear
interactions (i.e. the large Néel temperature), reduced magnetization values of less than 0.1 are
reached in the available field of 8 T. It is therefore difficult to obtain accurate χ3 values from
the weak observed curvature of the isotherms. Note that the reciprocal linear susceptibility
Bi/m changes by only 0.5% between zero field (lower end of isotherm) and 8 T (upper end of
isotherm).

Figure 5 displays the temperature dependence of the reciprocal cubic susceptibility as
obtained from the slopes in Arrott plots like in figure 4. It becomes apparent from figure 5(a)
that χ3 diverges with the mean field exponent of unity at T ⊥

C ≈ 100 K, but in contrast to the
mean field model the amplitude is negative. The same situation was observed for GdS, but

1 This can be considered a degeneracy which can be lifted by the fourth-order interactions.
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Figure 5. (a) Inverse cubic susceptibility χ−1
3 of GdAg as a function of temperature. χ3 is negative

and diverges with mean field critical exponent of unity at T ⊥
C ≈ 100 K. (b) Linear susceptibility χ1

as a function of temperature. These data have been obtained from the intersections of the magnetic
isotherms in the Arrott plot with the abscissa (see figure 4). Note the strongly suppressed zero
point in comparison with figure 3.
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there T ‖
N and T ⊥

C are identical [23]. In figure 5(b) the high-field linear susceptibilityχ1 obtained
from linear extrapolations m2 → 0 in the Arrott plot (figure 4) are seen in a representation
with a strongly suppressed zero point. In this graph the Néel temperature T ‖

N is seen somewhat
clearer than in figure 3, but in contrast to figure 3 no pronounced anomaly can be noticed at
the Curie temperature T ⊥

C in figure 5(b). This is because the strong field dependence of the
susceptibility seen in figure 3 is limited to small field values for which the antiferromagnetic
domains rotate such that, finally, the moments are oriented nearly perpendicular to the field.
For T < T ⊥

C the magnetic isotherms become more and more curved in the Arrott plot and a
meaningful evaluation of χ1 and χ3 is no longer possible.

The fact that in GdAg χ3 diverges at 100 K verifies that we are dealing with an intrinsic
Curie-type transition induced by fourth-order interactions and not with a ferromagnetic
precipitation or some contamination of the sample as it was assumed in [24]. Moreover,
the Gd–Ag phase diagram contains no other phase near to the 1:1 composition [27]. Our
conclusion is further supported by specific heat measurements which reveal a small anomaly
at ≈100 K [28]. From low-temperature magnetization curves it can be estimated that the
ordered saturation moment of O4 is only about 0.1 µB . This value is too small to be detected
with neutron scattering without polarization analysis, but it conforms to the spontaneous
magnetic moment observed in weak ferromagnets such as NiF2 (0.03 µB) having a tetragonal
crystal structure [29]. The fact that in contrast to NiF2 there is no finite resulting spontaneous
magnetization in GdAg we ascribe to a particular domain structure whereby the spontaneous
moments compensate. These domains are not free to rotate as revealed by the thermodynamic
non-equilibrium observed for T � T ⊥

C .
Next we discuss GdMg as the best example for the situation O2 = ferromagnetic and

O4 = antiferromagnetic [1, 30, 31]. In this case the ferromagnetic component due to O2

can be aligned parallel to a magnetic field. Indirect evidence for antiferromagnetic O4 is
given by a reduced longitudinal spontaneous magnetization. Ac susceptibility measurements
perpendicular to the field allow a direct identification of antiferromagneticO4 and its transition
temperature T ⊥

N because they contain no signal from O2 and T ‖
C [1]. GdMg is exceptional

in that the ordered magnetic moment of O4 is as large as ∼5 µB [31]. Therefore, no
intensity problems occur in detecting this component with neutron scattering. Extremely
large fields are necessary to force the antiferromagnetic component into the field direction
[30–32].

If the two order parameters are different in type as applies for GdMg they give rise to
different sets of magnetic scattering lines and can thus easily be distinguished, apart from
possible intensity problems if the ordered moment ofO4 is weak. In GdMg, ferromagneticO2

contributes to the scattering lines with integral indices while antiferromagneticO4 gives rise to
scattering lines with half-integral indices. In figure 6 we present examples for the temperature
dependence of the integrated scattering intensities of the two types of lines. These data have
been obtained on instrument D9 at the hot neutron source of ILL in Grenoble using a wavelength
of ∼0.463 Å. Figure 6 displays the normalized diffraction intensities IHKL/IHKL (T = 0)
of the ferromagnetic 0, 0, 3 Bragg line (after subtraction of a small nuclear contribution)
and of the antiferromagnetic 0, 0, 3/2 Bragg line. Both order parameters exhibit a T 2 law
at low temperatures. This law has been fitted to the intensity data in figure 6. It can be
seen that the phase transition at T ⊥

N is preceded, like the phase transition at T ‖
C , by critical

diffuse scattering intensities and has therefore the characteristics of an order–disorder phase
transition. Note that at T ⊥

N no anomaly is visible in the 0, 0, 3 intensity curve. This is in
keeping with the mutual orthogonality of both ordering structures [31]. Due to their different
critical temperatures and their comparable strengths, both phase transitions are well resolved
in specific heat measurements [1, 33].
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Figure 6. Normalized integrated neutron scattering intensities IHKL/IHKL (T = 0) of GdMg for
the ferromagnetic 0, 0, 3 diffraction line and the antiferromagnetic 0, 0, 3/2 diffraction line as a
function of temperature. Note that virtually no anomaly is seen in the 0, 0, 3 intensity curve at T ⊥

N .
For both types of line the T 2 law for the order parameter has been fitted.

We now turn to EuS and EuO as examples for the intriguing situation in whichO2 andO4

can be expected to be ferromagnetic. A further example of this class of materials seems to be
GdZn [24]. The fourth-order interaction sum as given by �3 was evaluated as �3 = +2.0 K
for EuS and �3 = +12 K for EuO [3]. The two anticipated ferromagnetic order parameters
give rise to the same set of magnetic Bragg lines with integral indices. Therefore, in zero field
neutron scattering experiments, i.e. in the presence of magnetic domains, it is not possible to
distinguish the two ordering structures. Because an orthogonal configuration of magnetization
components can be expected we must consider that neither component can be aligned perfectly
parallel to a magnetic field. A simple geometrical distinction between them is therefore not
possible.

In order to search for deviations from a nearly ferromagnetic but non-collinear spin
arrangement, measurements transverse to a static magnetic field are better suited than
measurements parallel to the field. We performed ac susceptibility measurements for different
angles between the static magnetic field Bo and the axis of the ac measuring system. The ac
frequency was 27 Hz and the amplitude B≈ of the excitation field was less than 10−4 T. It is
very important to use perfectly ground spherical samples in this experiment. For any sample
shape deviating from a rotationally symmetric ellipsoid, an infinite magnetic field is necessary
to rotate all magnetic domains into the field direction.

Figure 7 shows a selection ofχ measurements on an EuO single crystal sphere for different
angles  . These data have been obtained at a temperature of 4.2 K which is small compared
to the Curie temperature of 69.2 K. Below the demagnetization field of BD = 0.8 T all
susceptibilities are identical and given by the reciprocal demagnetization factor N−1 = 3.
Note that we make use of the dimensionless susceptibility defined as χ = J/B with the
magnetic induction of the sample, J , and the magnetic field, B, both given in Tesla.

In the limit T → 0 the susceptibility χ‖ parallel to the static fieldBo should suddenly drop
to zero at BD . This is not quite the case. A closer look at the steep flank near BD shows that
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Figure 7. Ac susceptibilities for an EuO single-crystal sphere measured at an angle  to a static
magnetic fieldBo as a function ofBo. The susceptibility perpendicular toBo, χ−1, can be described
by χ−1 = Js/Bo with Js = 2.4 T as the saturation magnetic density of EuO (full curve).

the decrease χ‖ → 0 is continuous. Measurements at 100 mK, i.e. in the thermodynamically
saturated state, using an increased number of data points per field unit confirm the continuous
behaviour of χ‖ at BD . This makes the evaluation of the spontaneous magnetization a rather
undefined task and necessitates some extrapolation procedure. However, theχ‖ data rapidly fall
below values of the order of 10−3 for Bo > BD . The longitudinal (field parallel) susceptibility
therefore seems to saturate in a rather normal way apart from the range close to BD .

To show this more clearly, we have integrated theχ‖(Bo)data to visualize the nearly perfect
saturating behaviour of the field-parallel magnetization component of EuO. As can be seen from
figure 8 the deviations from saturation are very small and correspond to the thermodynamically
not quite saturated state at 4.2 K. As we know from 153Eu NMR measurements [11] the thermal
decrease of the normalized spontaneous magnetization of EuO is given with a high precision
bym = 1 − 1.05 × 10−4T 2. Inserting T = 4.2 K givesm = 0.998 which conforms quite well
to the observed magnetization values at BD = 0.8 T in figure 8. The still remaining deviations
from saturation at 100 mK are too small to justify a quantitative interpretation in terms of an
intrinsic effect.

Also the transverse ac susceptibility χ⊥ conforms to what can be expected if the
magnetization is aligned by a static magnetic field Bo. The full curve in figure 7 is calculated
according to the simple expression χ⊥ = JS/Bo with Js = 2.4 T as the theoretical saturation
magnetic density (induction) of EuO. It can be seen that this function fits the experimental
χ⊥ data rather perfectly and that the transverse susceptibility is very large even for strong
longitudinal fields.

Since we are interested in the behaviour of the magnetization in an external fieldBo > BD
we need not consider demagnetization effects in the analytical expression of the transverse ac
susceptibility. To show this explicitly we assume that the magnetization is always parallel to
the resulting magnetic field which is given by the vectorial sum of the longitudinal static field
Bo and the perpendicular ac field B≈. We then have:

χ⊥ = J⊥/B≈ = J ‖/Bo = [(Js)
2 − (J⊥)2]0.5/Bo (3)
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Figure 8. Normalized field parallel magnetization of an EuO single-crystal sphere as a function
of external field Bo for temperatures of 100 mK and 4.8 K. In high fields a nearly ideal saturating
behaviour is observed.

since J 2
s = (J ‖)2 +(J⊥)2. Re-writing the extreme left and right sides of equation (3) we obtain

for the squared expressions:

(χ⊥)2(Bo)2 = (Js)2 − (χ⊥)2(B≈)2. (4)

We now normalize the perpendicular susceptibility by requesting that χ⊥ = 3 at Bo = BD =
0.8 T. This gives the relation:

9(BD)
2 = (Js)2 − 9(B≈)2. (5)

Equation (5) can be used to eliminate B≈ in equation (4). Considering that BD = 1/3 ∗ Js we
obtain

χ⊥ = Js/Bo (6)

with Js = 2.4 T for EuO and 1.5 T for EuS. Practically, equation (6) results immediately from
equation (4) considering that B≈ is of the order of 10−4 T but Bo and Js are of the order of 1 T.

Reading the χ( ) data at a constant external field Bo results into the quite normal
dependence χ( ) ∼ sin2( ). As a conclusion, the ac susceptibility confirms the rotational
symmetric state around the field axis as is expected for a classical magnetization vector aligned
by a static magnetic field. This does not, however, exclude our assumption of a non-collinear
magnetic structure but it shows that the vectorial sum of all moments adds to the expected total
moment, i.e. the vectorial sum of all transverse moments is zero.

In many materials it is observed that the critical temperatures of O2 and O4 are very
similar (see figure 2) or even identical as applies for EuTe [2] and GdS [23]. We therefore
investigated the critical temperature range of EuS and EuO in more detail using ac susceptibility
measurements on our spherical single crystals. If the magnetization changes very rapidly as
a function of field and temperature as is the case in the critical range, ac measurements are
better suited than dc measurement.

In figure 9 we present a selection of ac susceptibility curves χ⊥ for an EuS sphere obtained
for fields smaller than the demagnetization field of BD(T → 0) = 0.5 T. These curves have
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Figure 9. Ac susceptibility curves χ⊥(T ) for the indicated longitudinal magnetic fields measured
on an EuS single-crystal sphere perpendicular to the field. The levelχ−1 = 3 marks an internal field
of zero. The extrapolation χ⊥ → 3 gives the demagnetization field BD(T ) which is proportional
to the spontaneous polarization Jsp = 3BD . For details see text.

been measured transverse to the static magnetic field but this is of no importance for the
extrapolation Bi → 0. By close examination of these curves one can distinguish three groups
with a qualitatively different behaviour. For fields Bo < 0.05 T the ac susceptibility curves
exhibit a pronounced concave up curvature and all reach the demagnetization plateau of χ = 3
at nearly the same temperature. This point unambiguously marks the Curie temperature.

The next group of curves for field values of 0.05 < Bo < 0.17 T are fairly parallel
and exhibit only moderate rounding near the demagnetization plateau χ = 3. For fields
Bo > 0.17 T the ac susceptibility curves become consecutively more inclined to the left-hand
side and deflect increasingly to smaller temperatures instead of reaching the plateau of χ = 3.

The spontaneous magnetization Jsp is obtained from the demagnetization field BD
according to Jsp(T ) = 3BD(T ). BD(T ) is defined for Bi → 0, i.e. by the kink temperature at
χ = 3. Since all χ(T ) curves are more or less rounded near χ = 3 it is necessary to obtain the
kink temperature by extrapolation. This procedure introduces considerable ambiguities in all
macroscopic evaluations of the spontaneous magnetization. Moreover, for EuS a meaningful
linear extrapolation is possible only for the χ(T ) curves with 0.05 < Bo < 0.17 T. This
procedure is indicated by straight lines in figure 9. Clearly, a linear extrapolation is not
possible for the rounded curves with Bo < 0.05 T which reach the χ = 3 level at nearly the
same temperature. A linear extrapolation again becomes more and more questionable for the
high-field susceptibility curves on the left-hand side of figure 9, such that the meaning of
the as-obtained spontaneous magnetization values becomes unclear.

In figure 10 we present the spontaneous magnetization curve for EuS obtained using the
extrapolation method outlined. In contrast to all hitherto reported investigations [14–17, 34] we
arrive at the conclusion that the conventional Curie transitions of EuS and EuO are first order
with nearly the same discontinuity of the normalized order parameter of%m = 0.11±0.01. In
[15], for instance, data points withm < 0.11 are missing in the log–log plot of the spontaneous
magnetization of EuO as a function of the reduced temperature.
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Figure 10. Normalized spontaneous magnetization, msp(T ), of EuS obtained from extrapolations

χ⊥ → 3 in figure 9. A discontinuous rise atT ‖
C = 16.5 K classifies the conventional Curie transition

as first order. The obtuse kink at T ⊥
C = 15.7 K can be interpreted as the Curie temperature of O4.

A discontinuity of the order of 0.1 is hardly detected with neutron scattering. Considering
that the scattering intensities are proportional tom2 a discontinuity of%m = 0.1 only gives rise
to a 1% effect in the scattering intensities. Earlier neutron scattering studies on EuS and EuO
were limited tom > 0.25 because of such intensity problems [14]. Also the NMR experiment
on EuS was not conducted tom < 0.25 and therefore failed to observe the first-order character
of T ‖

C [34].
We should note that we are dealing with—as in the case of MnS2 [20]—a particular

first-order type transition caused by strong fourth-order interactions. At this transition the
linear susceptibility diverges with the Heisenberg critical exponent of γ ∼ 1.4 (see figure 9).
Moreover, no indications for latent heat [35–40] or lattice distortion [41] are given.

The spontaneous magnetization curve given in figure 10 consists of three sections
according to the three different groups of ac susceptibility curves in figure 9: a discontinuous
rise at T ‖

C , a nearly linear behaviour in the range 15.8 K < T < T
‖
C and a much weaker

temperature dependence for T < 15.8 K. Whether the obtuse kink at T = 15.8 K can
be identified with the Curie temperature T ⊥

C of O4 requires more detailed investigations. It
should be noted that this anomaly is absent in the EuxSr1−xS samples with x < 0.87, for which
fourth-order interactions are antiferromagnetic [22]. In fact, an antiferromagnetic O4 should
not contribute to the field parallel magnetization except for a reduced saturation magnetic
moment.

3. Conclusions

This experimental investigation was restricted to cubic materials with pure spin magnetism.
In the selected materials the magnetic interactions can be assumed to be isotropic and
dominated by quantum mechanical exchange processes. Using magnetization measurements
and neutron scattering we obtained evidence that in all materials a second ordering structure to
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be attributed to fourth-order exchange interactions exists. The character of this ordering process
(ferromagnetic or antiferromagnetic) always conforms to the sign of the fourth-order interaction
sum evaluated from measurements of the cubic susceptibility χ3. For instance, for the
antiferromagnetic metals GdS and GdAg, χ3 is negative (the paramagnetic isotherms increase
stronger than linearly with field) meaning that fourth-order interactions are ferromagnetic.
Consistent with this, macroscopic susceptibility measurements indicate that the associated
ordering structure is ferromagnetic. In both antiferromagnets it is observed that χ3 diverges
(with a negative amplitude) at the critical temperature of O4. This is taken as evidence that
the transition is driven by fourth-order interactions.

It should be noted that existence of a true long range magnetic order associated with O4

has not been proven for all the materials listed in table 1 using the microscopic method of
neutron scattering. Normally, the saturation moment of O4 is only weak and often below
the sensitivity limits of conventional neutron scattering. The only exception known so far
is GdMg with an ordered saturation moment of O4 as large as ∼5 µB [31]. For EuTe, for
instance, a molecular field analysis of the low-temperature magnetization curve revealed a
ratio of fourth-order to second-order molecular field constants of 0.5T/8T = 0.06 [2, 25].
Assuming that the ordered moments of antiferromagneticO2 and ferromagneticO4 scale with
this ratio, an ordered ferromagnetic moment of only 0.4 µB can be estimated for O4. For
those materials for which second-order and fourth-order interactions are both ferromagnetic
(EuS, EuO) or both antiferromagnetic (Eu0.75Sr0.25Te) the two order parameters give rise to the
same set of Bragg lines and cannot be distinguished without applying a magnetic field. While
for the antiferromagnet Eu0.75Sr0.25S the two characteristic critical field curves can easily be
detected with magnetization and neutron scattering measurements [5], a quite normal magnetic
behaviour is observed for EuS and EuO except in the critical temperature range. Also for the
ordered antiferromagnetic moment of O4 in EuxSr1−xS with x < 0.87 our magnetization
measurements indicate a value of only 0.1 . . . 0.2 µB . Such small moments are difficult to
detect with neutron scattering without polarization analysis.

In those materials in which we evaluated the strengths of the fourth-order interactions
quantitatively [3–6] it was observed that they compare with the strengths of the second-order
Heisenberg interactions. One observation which demonstrates this is the fact that the critical
temperatures of the two associated order parameters, O2 and O4, are very similar or even
identical.

Comparison with classical electrodynamics seems to be revealing. The leading terms in
the series expansion of the classical electrodynamic interaction according to increasing powers
of the reciprocal distance are magnetic dipole–dipole and electric quadrupole–quadrupole
interaction. Both interaction types can lead to well distinguished ordering processes which
are described by a dipolar and a quadrupolar order parameter, respectively [42, 43]. A number
of magnetic materials such as TmZn [44], CeAg [45], DyVO4 [46] TbVO4 [47] and TmTe
[48] are known to show classical behaviour with weakly coupled dipolar and quadrupolar
order parameters. In these materials the two order parameters have well separated transition
temperatures.

In quantum mechanics the leading interaction processes are bilinear (Heisenberg)
exchange interaction and fourth-order exchange interaction. Since exchange interactions
are much stronger than dipolar interactions, the associated transition temperatures are also
much higher. Apparently, also in quantum mechanical systems the different terms in the
series expansion of the exchange interaction lead to different ordering processes and generate
distinguished order parameters. In contrast to the classical quadrupole–quadrupole interaction
it is intuitively not clear what the order parameter induced by fourth-order interactions is.
Our investigations give a strong indication that fourth-order interactions break the rotational
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symmetry of the collinearly ordered spin system. In this way biaxial ordering structures are also
possible in cubic crystals with pure spin moments. For a ferromagnet the conventional order
parameter O2 is evidently given by the expectation value 〈Sz〉. O4 can therefore be identified
with the expectation value of the transverse spin component 〈Sx〉. As a consequence, existence
of O2 seems to be a necessary condition for ordering of O4, which means that the transition
temperature ofO4 will never be larger than the transition temperature ofO2. This is in contrast
to the classical case for which the quadrupolar ordering temperature can be larger as well as
smaller than the dipolar ordering temperature. For the materials selected here, quadrupolar
interactions can be assumed to be negligibly small.

Our ac susceptibility measurements in the critical temperature range of EuS and EuO
are in keeping with the mean field prediction of a discontinuous rise of the order parameter
at the Curie temperature [7–10]. This was not realized in many experimental studies before
[14–17]. As is well known, considerable experimental as well as methodical ambiguities
exist in the evaluation of the critical behaviour of the order parameter. This also applies
for our ac susceptibility measurements. However, for other experimental methods such as
NMR and neutron scattering these problems are by no means less. In particular, these two
methods suffer from considerable intensity problems and line broadening effects near TC .
Ac susceptibility measurements seem to be very sensitive in the critical temperature range
where the magnetization changes vary rapidly as a function of temperature and field. In a
forthcoming publication [22] we will show that EuS and EuO are not exceptions but that in
almost all materials the phase transition either of O2 or O4 is first order.

It should be recalled that depending on which quantity is discontinuous, as well as the
causative mechanism [49], there are different types of first-order transitions. A classification
must include criteria such as whether or not the phase transition is accompanied by a lattice
distortion, latent heat or hysteresis. For the first-order type magnetic phase transitions discussed
here, with a discontinuity only of the order parameter, those effects seem to be negligibly small.

In conclusion, the situation in the critical temperature range of EuS and EuO is too
complicated to allow observation of the critical behaviour for isotropic three-dimensional
materials with half-integral spins. The reasons for this are twofold: first, the phase transition
of O2 appears to be first order and, second, the phase transition of O4 seems to be very near
to the Curie temperature of O2. Therefore, other materials with well separated transition
temperatures forO2 andO4 must be chosen in order to evaluate the intrinsic critical behaviour
at the two-phase transitions. This is realized in GdMg with also a half-integral spin of S = 7/2.
Interestingly, the Curie transition ofO2 is second order in GdMg and exhibits mean-field critical
behaviour [1].
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[25] Köbler U, Apfelstedt I, Fischer K, Zinn W, Scheer E, Wosnitza J, v Löhneysen H and Brückel T 1993 Z. Phys.
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